Prime Factorization Calculator
Here is the answer to questions like: What is the prime factorization of 1014300? or is 1014300 a prime or a composite number?
Use the Prime Factorization tool above to discover if any given number is prime or composite and in this case calculate the its prime factors. See also in this web page a Prime Factorization Chart with all primes from 1 to 1000.
What is prime factorization?
Definition of prime factorization
The prime factorization is the decomposition of a composite number into a product of prime factors that, if multiplied, recreate the original number. Factors by definition are the numbers that multiply to create another number. A prime number is an integer greater than one which is divided only by one and by itself. For example, the only divisors of 7 are 1 and 7, so 7 is a prime number, while the number 72 has divisors deived from 23•32 like 2, 3, 4, 6, 8, 12, 24 ... and 72 itself, making 72 not a prime number. Note the the only "prime" factors of 72 are 2 and 3 which are prime numbers.
Prime factorization example 1
Let's find the prime factorization of 72.
Solution 1
Start with the smallest prime number that divides into 72, in this case 2. We can write 72 as:
72 = 2 x 36
Now find the smallest prime number that divides into 36. Again we can use 2, and write the 36 as 2 x 18, to give.
72 = 2 x 2 x 18
18 also divides by 2 (18 = 2 x 9), so we have:
72 = 2 x 2 x 2 x 9
9 divides by 3 (9 = 3 x 3), so we have:
72 = 2 x 2 x 2 x 3 x 3
2, 2, 2, 3 and 3 are all prime numbers, so we have our answer.
In short, we would write the solution as:
72 = 2 x 36
72 = 2 x 2 x 18
72 = 2 x 2 x 2 x 9
72 = 2 x 2 x 2 x 3 x 3
72 = 23 x 32 (prime factorization exponential form)
Solution 2
Using a factor tree:
- Procedure:
- Find 2 factors of the number;
- Look at the 2 factors and determine if at least one of them is not prime;
- If it is not a prime factor it;
- Repeat this process until all factors are prime.
See how to factor the number 72:
72 /\ 236 /\ 218 /\ 29 /\ 33 | 72 is not prime --> divide by 2 36 is not prime --> divide by 2 18 is not prime --> divide by 2 9 is not prime --> divide by 3 3 and 3 are prime --> stop |
Taking the left-hand numbers and the right-most number of the last row (dividers) an multiplying then, we have
72 = 2 x 2 x 2 x 3 x 3
72 = 23 x 32 (prime factorization exponential form)
Note that these dividers are the prime factors. They are also called the leaves of the factor tree.
Prime factorization example 2
See how to factor the number 588:
588 /\ 2294 /\ 2147 /\ 349 /\ 77 | 588 is not prime --> divide by 2 294 is not prime --> divide by 2 147 is not prime --> divide by 3 49 is not prime --> divide by 7 7 and 7 are prime --> stop |
Taking the left-hand numbers and the right-most number of the last row (dividers) an multiplying then, we have
588 = 2 x 2 x 3 x 7 x 7
588 = 22 x 3 x 72 (prime factorization exponential form)
Prime Factorization Chart 1-1000
n Prime
Factorization2 = 2 3 = 3 4 = 2•2 5 = 5 6 = 2•3 7 = 7 8 = 2•2•2 9 = 3•3 10 = 2•5 11 = 11 12 = 2•2•3 13 = 13 14 = 2•7 15 = 3•5 16 = 2•2•2•2 17 = 17 18 = 2•3•3 19 = 19 20 = 2•2•5 21 = 3•7 22 = 2•11 23 = 23 24 = 2•2•2•3 25 = 5•5 26 = 2•13 27 = 3•3•3 28 = 2•2•7 29 = 29 30 = 2•3•5 31 = 31 32 = 2•2•2•2•2 33 = 3•11 34 = 2•17 35 = 5•7 36 = 2•2•3•3 37 = 37 38 = 2•19 39 = 3•13 40 = 2•2•2•5 41 = 41 42 = 2•3•7 43 = 43 44 = 2•2•11 45 = 3•3•5 46 = 2•23 47 = 47 48 = 2•2•2•2•3 49 = 7•7 50 = 2•5•5 51 = 3•17 52 = 2•2•13 53 = 53 54 = 2•3•3•3 55 = 5•11 56 = 2•2•2•7 57 = 3•19 58 = 2•29 59 = 59 60 = 2•2•3•5 61 = 61 62 = 2•31 63 = 3•3•7 64 = 2•2•2•2•2•2 65 = 5•13 66 = 2•3•11 67 = 67 68 = 2•2•17 69 = 3•23 70 = 2•5•7 71 = 71 72 = 2•2•2•3•3 73 = 73 74 = 2•37 75 = 3•5•5 76 = 2•2•19 77 = 7•11 78 = 2•3•13 79 = 79 80 = 2•2•2•2•5 81 = 3•3•3•3 82 = 2•41 83 = 83 84 = 2•2•3•7 85 = 5•17 86 = 2•43 87 = 3•29 88 = 2•2•2•11 89 = 89 90 = 2•3•3•5 91 = 7•13 92 = 2•2•23 93 = 3•31 94 = 2•47 95 = 5•19 96 = 2•2•2•2•2•3 97 = 97 98 = 2•7•7 99 = 3•3•11 100 = 2•2•5•5 101 = 101 102 = 2•3•17 103 = 103 104 = 2•2•2•13 105 = 3•5•7 106 = 2•53 107 = 107 108 = 2•2•3•3•3 109 = 109 110 = 2•5•11 111 = 3•37 112 = 2•2•2•2•7 113 = 113 114 = 2•3•19 115 = 5•23 116 = 2•2•29 117 = 3•3•13 118 = 2•59 119 = 7•17 120 = 2•2•2•3•5 121 = 11•11 122 = 2•61 123 = 3•41 124 = 2•2•31 125 = 5•5•5 126 = 2•3•3•7 127 = 127 128 = 2•2•2•2•2•2•2 129 = 3•43 130 = 2•5•13 131 = 131 132 = 2•2•3•11 133 = 7•19 134 = 2•67 135 = 3•3•3•5 136 = 2•2•2•17 137 = 137 138 = 2•3•23 139 = 139 140 = 2•2•5•7 141 = 3•47 142 = 2•71 143 = 11•13 144 = 2•2•2•2•3•3 145 = 5•29 146 = 2•73 147 = 3•7•7 148 = 2•2•37 149 = 149 150 = 2•3•5•5 151 = 151 152 = 2•2•2•19 153 = 3•3•17 154 = 2•7•11 155 = 5•31 156 = 2•2•3•13 157 = 157 158 = 2•79 159 = 3•53 160 = 2•2•2•2•2•5 161 = 7•23 162 = 2•3•3•3•3 163 = 163 164 = 2•2•41 165 = 3•5•11 166 = 2•83 167 = 167 168 = 2•2•2•3•7 169 = 13•13 170 = 2•5•17 171 = 3•3•19 172 = 2•2•43 173 = 173 174 = 2•3•29 175 = 5•5•7 176 = 2•2•2•2•11 177 = 3•59 178 = 2•89 179 = 179 180 = 2•2•3•3•5 181 = 181 182 = 2•7•13 183 = 3•61 184 = 2•2•2•23 185 = 5•37 186 = 2•3•31 187 = 11•17 188 = 2•2•47 189 = 3•3•3•7 190 = 2•5•19 191 = 191 192 = 2•2•2•2•2•2•3 193 = 193 194 = 2•97 195 = 3•5•13 196 = 2•2•7•7 197 = 197 198 = 2•3•3•11 199 = 199 200 = 2•2•2•5•5 201 = 3•67 202 = 2•101 203 = 7•29 204 = 2•2•3•17 205 = 5•41 206 = 2•103 207 = 3•3•23 208 = 2•2•2•2•13 209 = 11•19 210 = 2•3•5•7 211 = 211 212 = 2•2•53 213 = 3•71 214 = 2•107 215 = 5•43 216 = 2•2•2•3•3•3 217 = 7•31 218 = 2•109 219 = 3•73 220 = 2•2•5•11 221 = 13•17 222 = 2•3•37 223 = 223 224 = 2•2•2•2•2•7 225 = 3•3•5•5 226 = 2•113 227 = 227 228 = 2•2•3•19 229 = 229 230 = 2•5•23 231 = 3•7•11 232 = 2•2•2•29 233 = 233 234 = 2•3•3•13 235 = 5•47 236 = 2•2•59 237 = 3•79 238 = 2•7•17 239 = 239 240 = 2•2•2•2•3•5 241 = 241 242 = 2•11•11 243 = 3•3•3•3•3 244 = 2•2•61 245 = 5•7•7 246 = 2•3•41 247 = 13•19 248 = 2•2•2•31 249 = 3•83 250 = 2•5•5•5 n Prime
Factorization251 = 251 252 = 2•2•3•3•7 253 = 11•23 254 = 2•127 255 = 3•5•17 256 = 2•2•2•2•2•2•2•2 257 = 257 258 = 2•3•43 259 = 7•37 260 = 2•2•5•13 261 = 3•3•29 262 = 2•131 263 = 263 264 = 2•2•2•3•11 265 = 5•53 266 = 2•7•19 267 = 3•89 268 = 2•2•67 269 = 269 270 = 2•3•3•3•5 271 = 271 272 = 2•2•2•2•17 273 = 3•7•13 274 = 2•137 275 = 5•5•11 276 = 2•2•3•23 277 = 277 278 = 2•139 279 = 3•3•31 280 = 2•2•2•5•7 281 = 281 282 = 2•3•47 283 = 283 284 = 2•2•71 285 = 3•5•19 286 = 2•11•13 287 = 7•41 288 = 2•2•2•2•2•3•3 289 = 17•17 290 = 2•5•29 291 = 3•97 292 = 2•2•73 293 = 293 294 = 2•3•7•7 295 = 5•59 296 = 2•2•2•37 297 = 3•3•3•11 298 = 2•149 299 = 13•23 300 = 2•2•3•5•5 301 = 7•43 302 = 2•151 303 = 3•101 304 = 2•2•2•2•19 305 = 5•61 306 = 2•3•3•17 307 = 307 308 = 2•2•7•11 309 = 3•103 310 = 2•5•31 311 = 311 312 = 2•2•2•3•13 313 = 313 314 = 2•157 315 = 3•3•5•7 316 = 2•2•79 317 = 317 318 = 2•3•53 319 = 11•29 320 = 2•2•2•2•2•2•5 321 = 3•107 322 = 2•7•23 323 = 17•19 324 = 2•2•3•3•3•3 325 = 5•5•13 326 = 2•163 327 = 3•109 328 = 2•2•2•41 329 = 7•47 330 = 2•3•5•11 331 = 331 332 = 2•2•83 333 = 3•3•37 334 = 2•167 335 = 5•67 336 = 2•2•2•2•3•7 337 = 337 338 = 2•13•13 339 = 3•113 340 = 2•2•5•17 341 = 11•31 342 = 2•3•3•19 343 = 7•7•7 344 = 2•2•2•43 345 = 3•5•23 346 = 2•173 347 = 347 348 = 2•2•3•29 349 = 349 350 = 2•5•5•7 351 = 3•3•3•13 352 = 2•2•2•2•2•11 353 = 353 354 = 2•3•59 355 = 5•71 356 = 2•2•89 357 = 3•7•17 358 = 2•179 359 = 359 360 = 2•2•2•3•3•5 361 = 19•19 362 = 2•181 363 = 3•11•11 364 = 2•2•7•13 365 = 5•73 366 = 2•3•61 367 = 367 368 = 2•2•2•2•23 369 = 3•3•41 370 = 2•5•37 371 = 7•53 372 = 2•2•3•31 373 = 373 374 = 2•11•17 375 = 3•5•5•5 376 = 2•2•2•47 377 = 13•29 378 = 2•3•3•3•7 379 = 379 380 = 2•2•5•19 381 = 3•127 382 = 2•191 383 = 383 384 = 2•2•2•2•2•2•2•3 385 = 5•7•11 386 = 2•193 387 = 3•3•43 388 = 2•2•97 389 = 389 390 = 2•3•5•13 391 = 17•23 392 = 2•2•2•7•7 393 = 3•131 394 = 2•197 395 = 5•79 396 = 2•2•3•3•11 397 = 397 398 = 2•199 399 = 3•7•19 400 = 2•2•2•2•5•5 401 = 401 402 = 2•3•67 403 = 13•31 404 = 2•2•101 405 = 3•3•3•3•5 406 = 2•7•29 407 = 11•37 408 = 2•2•2•3•17 409 = 409 410 = 2•5•41 411 = 3•137 412 = 2•2•103 413 = 7•59 414 = 2•3•3•23 415 = 5•83 416 = 2•2•2•2•2•13 417 = 3•139 418 = 2•11•19 419 = 419 420 = 2•2•3•5•7 421 = 421 422 = 2•211 423 = 3•3•47 424 = 2•2•2•53 425 = 5•5•17 426 = 2•3•71 427 = 7•61 428 = 2•2•107 429 = 3•11•13 430 = 2•5•43 431 = 431 432 = 2•2•2•2•3•3•3 433 = 433 434 = 2•7•31 435 = 3•5•29 436 = 2•2•109 437 = 19•23 438 = 2•3•73 439 = 439 440 = 2•2•2•5•11 441 = 3•3•7•7 442 = 2•13•17 443 = 443 444 = 2•2•3•37 445 = 5•89 446 = 2•223 447 = 3•149 448 = 2•2•2•2•2•2•7 449 = 449 450 = 2•3•3•5•5 451 = 11•41 452 = 2•2•113 453 = 3•151 454 = 2•227 455 = 5•7•13 456 = 2•2•2•3•19 457 = 457 458 = 2•229 459 = 3•3•3•17 460 = 2•2•5•23 461 = 461 462 = 2•3•7•11 463 = 463 464 = 2•2•2•2•29 465 = 3•5•31 466 = 2•233 467 = 467 468 = 2•2•3•3•13 469 = 7•67 470 = 2•5•47 471 = 3•157 472 = 2•2•2•59 473 = 11•43 474 = 2•3•79 475 = 5•5•19 476 = 2•2•7•17 477 = 3•3•53 478 = 2•239 479 = 479 480 = 2•2•2•2•2•3•5 481 = 13•37 482 = 2•241 483 = 3•7•23 484 = 2•2•11•11 485 = 5•97 486 = 2•3•3•3•3•3 487 = 487 488 = 2•2•2•61 489 = 3•163 490 = 2•5•7•7 491 = 491 492 = 2•2•3•41 493 = 17•29 494 = 2•13•19 495 = 3•3•5•11 496 = 2•2•2•2•31 497 = 7•71 498 = 2•3•83 499 = 499 500 = 2•2•5•5•5 n Prime
Factorization501 = 3•167 502 = 2•251 503 = 503 504 = 2•2•2•3•3•7 505 = 5•101 506 = 2•11•23 507 = 3•13•13 508 = 2•2•127 509 = 509 510 = 2•3•5•17 511 = 7•73 512 = 2•2•2•2•2•2•2•2•2 513 = 3•3•3•19 514 = 2•257 515 = 5•103 516 = 2•2•3•43 517 = 11•47 518 = 2•7•37 519 = 3•173 520 = 2•2•2•5•13 521 = 521 522 = 2•3•3•29 523 = 523 524 = 2•2•131 525 = 3•5•5•7 526 = 2•263 527 = 17•31 528 = 2•2•2•2•3•11 529 = 23•23 530 = 2•5•53 531 = 3•3•59 532 = 2•2•7•19 533 = 13•41 534 = 2•3•89 535 = 5•107 536 = 2•2•2•67 537 = 3•179 538 = 2•269 539 = 7•7•11 540 = 2•2•3•3•3•5 541 = 541 542 = 2•271 543 = 3•181 544 = 2•2•2•2•2•17 545 = 5•109 546 = 2•3•7•13 547 = 547 548 = 2•2•137 549 = 3•3•61 550 = 2•5•5•11 551 = 19•29 552 = 2•2•2•3•23 553 = 7•79 554 = 2•277 555 = 3•5•37 556 = 2•2•139 557 = 557 558 = 2•3•3•31 559 = 13•43 560 = 2•2•2•2•5•7 561 = 3•11•17 562 = 2•281 563 = 563 564 = 2•2•3•47 565 = 5•113 566 = 2•283 567 = 3•3•3•3•7 568 = 2•2•2•71 569 = 569 570 = 2•3•5•19 571 = 571 572 = 2•2•11•13 573 = 3•191 574 = 2•7•41 575 = 5•5•23 576 = 2•2•2•2•2•2•3•3 577 = 577 578 = 2•17•17 579 = 3•193 580 = 2•2•5•29 581 = 7•83 582 = 2•3•97 583 = 11•53 584 = 2•2•2•73 585 = 3•3•5•13 586 = 2•293 587 = 587 588 = 2•2•3•7•7 589 = 19•31 590 = 2•5•59 591 = 3•197 592 = 2•2•2•2•37 593 = 593 594 = 2•3•3•3•11 595 = 5•7•17 596 = 2•2•149 597 = 3•199 598 = 2•13•23 599 = 599 600 = 2•2•2•3•5•5 601 = 601 602 = 2•7•43 603 = 3•3•67 604 = 2•2•151 605 = 5•11•11 606 = 2•3•101 607 = 607 608 = 2•2•2•2•2•19 609 = 3•7•29 610 = 2•5•61 611 = 13•47 612 = 2•2•3•3•17 613 = 613 614 = 2•307 615 = 3•5•41 616 = 2•2•2•7•11 617 = 617 618 = 2•3•103 619 = 619 620 = 2•2•5•31 621 = 3•3•3•23 622 = 2•311 623 = 7•89 624 = 2•2•2•2•3•13 625 = 5•5•5•5 626 = 2•313 627 = 3•11•19 628 = 2•2•157 629 = 17•37 630 = 2•3•3•5•7 631 = 631 632 = 2•2•2•79 633 = 3•211 634 = 2•317 635 = 5•127 636 = 2•2•3•53 637 = 7•7•13 638 = 2•11•29 639 = 3•3•71 640 = 2•2•2•2•2•2•2•5 641 = 641 642 = 2•3•107 643 = 643 644 = 2•2•7•23 645 = 3•5•43 646 = 2•17•19 647 = 647 648 = 2•2•2•3•3•3•3 649 = 11•59 650 = 2•5•5•13 651 = 3•7•31 652 = 2•2•163 653 = 653 654 = 2•3•109 655 = 5•131 656 = 2•2•2•2•41 657 = 3•3•73 658 = 2•7•47 659 = 659 660 = 2•2•3•5•11 661 = 661 662 = 2•331 663 = 3•13•17 664 = 2•2•2•83 665 = 5•7•19 666 = 2•3•3•37 667 = 23•29 668 = 2•2•167 669 = 3•223 670 = 2•5•67 671 = 11•61 672 = 2•2•2•2•2•3•7 673 = 673 674 = 2•337 675 = 3•3•3•5•5 676 = 2•2•13•13 677 = 677 678 = 2•3•113 679 = 7•97 680 = 2•2•2•5•17 681 = 3•227 682 = 2•11•31 683 = 683 684 = 2•2•3•3•19 685 = 5•137 686 = 2•7•7•7 687 = 3•229 688 = 2•2•2•2•43 689 = 13•53 690 = 2•3•5•23 691 = 691 692 = 2•2•173 693 = 3•3•7•11 694 = 2•347 695 = 5•139 696 = 2•2•2•3•29 697 = 17•41 698 = 2•349 699 = 3•233 700 = 2•2•5•5•7 701 = 701 702 = 2•3•3•3•13 703 = 19•37 704 = 2•2•2•2•2•2•11 705 = 3•5•47 706 = 2•353 707 = 7•101 708 = 2•2•3•59 709 = 709 710 = 2•5•71 711 = 3•3•79 712 = 2•2•2•89 713 = 23•31 714 = 2•3•7•17 715 = 5•11•13 716 = 2•2•179 717 = 3•239 718 = 2•359 719 = 719 720 = 2•2•2•2•3•3•5 721 = 7•103 722 = 2•19•19 723 = 3•241 724 = 2•2•181 725 = 5•5•29 726 = 2•3•11•11 727 = 727 728 = 2•2•2•7•13 729 = 3•3•3•3•3•3 730 = 2•5•73 731 = 17•43 732 = 2•2•3•61 733 = 733 734 = 2•367 735 = 3•5•7•7 736 = 2•2•2•2•2•23 737 = 11•67 738 = 2•3•3•41 739 = 739 740 = 2•2•5•37 741 = 3•13•19 742 = 2•7•53 743 = 743 744 = 2•2•2•3•31 745 = 5•149 746 = 2•373 747 = 3•3•83 748 = 2•2•11•17 749 = 7•107 750 = 2•3•5•5•5 n Prime
Factorization751 = 751 752 = 2•2•2•2•47 753 = 3•251 754 = 2•13•29 755 = 5•151 756 = 2•2•3•3•3•7 757 = 757 758 = 2•379 759 = 3•11•23 760 = 2•2•2•5•19 761 = 761 762 = 2•3•127 763 = 7•109 764 = 2•2•191 765 = 3•3•5•17 766 = 2•383 767 = 13•59 768 = 2•2•2•2•2•2•2•2•3 769 = 769 770 = 2•5•7•11 771 = 3•257 772 = 2•2•193 773 = 773 774 = 2•3•3•43 775 = 5•5•31 776 = 2•2•2•97 777 = 3•7•37 778 = 2•389 779 = 19•41 780 = 2•2•3•5•13 781 = 11•71 782 = 2•17•23 783 = 3•3•3•29 784 = 2•2•2•2•7•7 785 = 5•157 786 = 2•3•131 787 = 787 788 = 2•2•197 789 = 3•263 790 = 2•5•79 791 = 7•113 792 = 2•2•2•3•3•11 793 = 13•61 794 = 2•397 795 = 3•5•53 796 = 2•2•199 797 = 797 798 = 2•3•7•19 799 = 17•47 800 = 2•2•2•2•2•5•5 801 = 3•3•89 802 = 2•401 803 = 11•73 804 = 2•2•3•67 805 = 5•7•23 806 = 2•13•31 807 = 3•269 808 = 2•2•2•101 809 = 809 810 = 2•3•3•3•3•5 811 = 811 812 = 2•2•7•29 813 = 3•271 814 = 2•11•37 815 = 5•163 816 = 2•2•2•2•3•17 817 = 19•43 818 = 2•409 819 = 3•3•7•13 820 = 2•2•5•41 821 = 821 822 = 2•3•137 823 = 823 824 = 2•2•2•103 825 = 3•5•5•11 826 = 2•7•59 827 = 827 828 = 2•2•3•3•23 829 = 829 830 = 2•5•83 831 = 3•277 832 = 2•2•2•2•2•2•13 833 = 7•7•17 834 = 2•3•139 835 = 5•167 836 = 2•2•11•19 837 = 3•3•3•31 838 = 2•419 839 = 839 840 = 2•2•2•3•5•7 841 = 29•29 842 = 2•421 843 = 3•281 844 = 2•2•211 845 = 5•13•13 846 = 2•3•3•47 847 = 7•11•11 848 = 2•2•2•2•53 849 = 3•283 850 = 2•5•5•17 851 = 23•37 852 = 2•2•3•71 853 = 853 854 = 2•7•61 855 = 3•3•5•19 856 = 2•2•2•107 857 = 857 858 = 2•3•11•13 859 = 859 860 = 2•2•5•43 861 = 3•7•41 862 = 2•431 863 = 863 864 = 2•2•2•2•2•3•3•3 865 = 5•173 866 = 2•433 867 = 3•17•17 868 = 2•2•7•31 869 = 11•79 870 = 2•3•5•29 871 = 13•67 872 = 2•2•2•109 873 = 3•3•97 874 = 2•19•23 875 = 5•5•5•7 876 = 2•2•3•73 877 = 877 878 = 2•439 879 = 3•293 880 = 2•2•2•2•5•11 881 = 881 882 = 2•3•3•7•7 883 = 883 884 = 2•2•13•17 885 = 3•5•59 886 = 2•443 887 = 887 888 = 2•2•2•3•37 889 = 7•127 890 = 2•5•89 891 = 3•3•3•3•11 892 = 2•2•223 893 = 19•47 894 = 2•3•149 895 = 5•179 896 = 2•2•2•2•2•2•2•7 897 = 3•13•23 898 = 2•449 899 = 29•31 900 = 2•2•3•3•5•5 901 = 17•53 902 = 2•11•41 903 = 3•7•43 904 = 2•2•2•113 905 = 5•181 906 = 2•3•151 907 = 907 908 = 2•2•227 909 = 3•3•101 910 = 2•5•7•13 911 = 911 912 = 2•2•2•2•3•19 913 = 11•83 914 = 2•457 915 = 3•5•61 916 = 2•2•229 917 = 7•131 918 = 2•3•3•3•17 919 = 919 920 = 2•2•2•5•23 921 = 3•307 922 = 2•461 923 = 13•71 924 = 2•2•3•7•11 925 = 5•5•37 926 = 2•463 927 = 3•3•103 928 = 2•2•2•2•2•29 929 = 929 930 = 2•3•5•31 931 = 7•7•19 932 = 2•2•233 933 = 3•311 934 = 2•467 935 = 5•11•17 936 = 2•2•2•3•3•13 937 = 937 938 = 2•7•67 939 = 3•313 940 = 2•2•5•47 941 = 941 942 = 2•3•157 943 = 23•41 944 = 2•2•2•2•59 945 = 3•3•3•5•7 946 = 2•11•43 947 = 947 948 = 2•2•3•79 949 = 13•73 950 = 2•5•5•19 951 = 3•317 952 = 2•2•2•7•17 953 = 953 954 = 2•3•3•53 955 = 5•191 956 = 2•2•239 957 = 3•11•29 958 = 2•479 959 = 7•137 960 = 2•2•2•2•2•2•3•5 961 = 31•31 962 = 2•13•37 963 = 3•3•107 964 = 2•2•241 965 = 5•193 966 = 2•3•7•23 967 = 967 968 = 2•2•2•11•11 969 = 3•17•19 970 = 2•5•97 971 = 971 972 = 2•2•3•3•3•3•3 973 = 7•139 974 = 2•487 975 = 3•5•5•13 976 = 2•2•2•2•61 977 = 977 978 = 2•3•163 979 = 11•89 980 = 2•2•5•7•7 981 = 3•3•109 982 = 2•491 983 = 983 984 = 2•2•2•3•41 985 = 5•197 986 = 2•17•29 987 = 3•7•47 988 = 2•2•13•19 989 = 23•43 990 = 2•3•3•5•11 991 = 991 992 = 2•2•2•2•2•31 993 = 3•331 994 = 2•7•71 995 = 5•199 996 = 2•2•3•83 997 = 997 998 = 2•499 999 = 3•3•3•37 1000 = 2•2•2•5•5•5
Prime Factorization Calculator
Please link to this page! Just right click on the above image, choose copy link address, then past it in your HTML.
Sample Number Factorizations.
- Prime factorization of 3857
- Prime factorization of 824
- Prime factorization of 1134903170
- Prime factorization of 14
- Prime factorization of 610
- Prime factorization of 101610
- Prime factorization of 956
- Prime factorization of 842
- Prime factorization of 170